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INVESTIGATION OF THE PROCESS OF SIMPLE WAVE INVERSION
IN AN ANISOTROPIC PLASMA

M. S. Ruderman

Introduction ' ' /3*

I AN - -- - .- - R—— . L. -
Many problems{in space and laboratory physics lead to the necessity of f
= & < _

investigating movements of plasma for which the charaéteristic parameter varis
ation length is small in comparison to the mean free path of the charged particles

but large in comparison to the Larmor radius.

Chew, Goldberg and Low [l] have shown that in this case the behavior of the
plasma can be described by a system of magnetohydrodynamic equations using aniso-

tropic pressure.

On the basis of these equations a study was made in [2] of simple waves,
the example being taken of nonlinear waves and it being assumed that the longi-

tudinal and transverse pressures (p, and p,) are small in comparison to magnetlc

pressure B /Swé_}n which B is the vector of magnetic fleld 1ndﬁct10ﬁ -and in [3]ut11

b - v

1nvest1gat10n is made of 51mp1e waves w1th no restflctlons 1mposed on the hydro—

dynamic parameters,

The process of inversion of simple waves in the Chew, Goldbergy; and Low

(CGL) approximation is investigated in the present paper.

§1. Simple Waves in an Anisotropic Plasma . 74

The system of magnetohydrodynamic equations in the CGL approximation is of

the form (see, for example_ﬁfl]

*Numbers in the margin indicate pagination in the foreign text.




(1.1)
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Here p is the density, v the mean velocity, p, pl_L are the transfers and
' “
longitudinal pressures, P equals the pressure tensor, B is the magnetic field

- -
induction vector, and B = B/B is the unit .vector along the magnetic field.

(J R e

Simple wave .or Riemann wave is the term applied to a one dlmen51onal flow

of gas in which all the hydrodynamictparameters depend on ¢ (x, t), in which t

is time and x is the space coordinate.

¢ is an arbitrary function. We will assume that ¢ = p. We introduce the

phase velocity of wave motion relatlve to the gas in accordance with the formula

. (1.2)

in which % is the phase velocity of wave motlon and u is the velocity of gas

a ﬂ u,

IR TRRNS T i

motion along the x axis. It has been shown in [3] that a® may assume 4 values,
of which we will consider only 2, those corresponding to rapid and slow Riemann '

waves. We designate these values as af and o? respectively.

There is derived in [3] a system of equations ascribing the variation in

parameters as a function of p in rapid and slow simple waves:

] BEV = vé——BE‘-. A ' _“ ‘_ d | _;..k‘a‘o-‘. -7 TV“W“ o '-V"Vl
Ik T
”1;»}"%" const ; %'gg’f = const ; . [
Ef paB' {4-E03py-pi) +Lpu-patep,-RIE-01 =} | (1.3) #6~
B.=const; | I
i B 4 — \{]é_,_ | :
% a—h "§‘+ ('QP, PLN {[ B *‘871:'+‘é'j)'(9p,,'PL) l ‘
T e x|
# +[(%)‘f(t-£)—-éﬁ%& 5(2-.%:.,«34#8}-* f—ﬁ—;}j , r- :
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Here Bx, By are the components of the magnetic field strength vector along the
X and y axes, and vfis the velocity of gas motion along the y axis. We addi-

ticnally introduce the notation

(1.4)
| Aumpal, —(4-Dpi=3lp; c=p,-u4p. b, .

‘/A qualitative study is made in [3] of the field of integral curves for
r§p1d and slow waves in the p, Bi plane. The field of integral curves for rapid

waves is illustrated in Figure 1, and that for slow waves in Figure 2.

In both figures curve 1 is defined by the equation

! P?=Pé- ' (1.5)

"to the right of curve 1 there is a region of serpentine instability defined by

statement of a quality p" > P The values of p* and p** are determined by

the equation

' ' Bi | o T
P‘_ hpu ""—Zt—“]}‘- Pn *: +PJ, 0 : J . (1.6]

Superscripts (*) and (**) denote that the values are taken at Bi =0 and p = p* /6

and p = p** respectively.

For slow simple -waves along an integral curve emerging from the p axis to _ __
the left of p**,-aBi/up < 0 everywhere. If the 1ntegra1 curve emerges from o
the p axis to the right of p**, then 1n1t1a11y uBy/up > O, this derlvatlve subse— \

C e -

quently becoming infinite, after which aBy/ap < 0.

52. Derivation of Equations for Inversion Time and Path

It is convenient for purposes of subsequent discussion to introduce the

[dlmen51on1ess\var1ab1es

ﬁ = Ssrp../Bo 3 Ap/p = (Pu P/ P,
=p/Pe, Q= a+.-po/3a, '= ulp./82)" 2.1y
reelsi/o.l), k= /L
here Py is the characteristic density, L the characteristic dimension, and BO

the magnetic induction at p = Py



Making use of (2.1) we reduce equations (1.3) and relations (1.4) to

dimensionless form. 'As the result we obtaln

. d(f/e); 2 Abe | ode o af

a(p ey A AP g (2.2)
(i-—g){ _co'rm/f ?;‘g-—:cm'z/yf.

’

] :p'a; - - ﬁ'm +‘2f u—m—ﬁ]

I - 4P (2.3)
C'= 25 M{«i 2L~ (14 €4 R
P Bors . 5
u**‘"}vp ”(1 )ﬁ—#——: +2{(1+705)}r
L S R Y A N
1t -4 8P)p e b Lolt e 2 el 11-)
: 1/2 :
-3 (1-% )(.’{2 o)+ 20 - -%—-(‘j} }
We shall[henceforth omit the primes accompanylng the dimensionless values.
In order to find p(r,:ﬁj} it is necessary tec seclve the equation
9P 4 pdu, 2 A
. I a’[’+'p5_§- +ua-§E—_-0 J
in which ‘ R C T
1 3uadua IQ,:.:.-Q.:?.
| % dp ?% p .ok
1 o -
Hence for p we have the equation:
| gﬁ+tu+0~+—lﬁ“9 f’ (2.4)
o ledn R ! seE s ‘
The equation of characteristics and the characterlstlc relation for equation
'(2.5) are of the form | A e
| ...5:. a*--c-u; K fozconsf ] (2.5)

from which it follows that the characterlstlcs are straight lines. Inversion
occurs at the time when 2 infinitely close characteristics intersect for the

first time.

Let f e e
55 , NEHY E<0
=4 45)  0&yed ,
T=0 2.6

with af/af < 0 when 0 <& <1, £(1) = 1. In plane t, £ the characteristics

emerging from the £ axis to the right of 1 and to the left of 0 will be parallel.



OnZy the characteristics emerging from segment [0, 1] can change in slope. In |

-“Partiéular, if|aA/ap > 0, the angle between the characteristics and the £ axis

will decrease with movement from ¢ to 1.

‘ Let 0 < Eo < 1. Let us consider the characteristics emerging from points
Eo and EO‘+ A, The equations for them are written in the form

,g AFeY) Tene

l E= = A($(%, +a§))'c+§°+_\g
in which » = o + u. By flndghérthe palnt of intersection of these 2 lines and
Passing to the limit at & - 0, we learn that 1nf1n1tely close characteristics

intersect at the point .

- 4 __i
T [dp o(z;]
Then the inversion time is deflned by the formula
Yiny o?élﬁ [ Z~4P f(€) dg . (2.7)

If the inversion path is defined as the distance covéred by the base of theé

profile of (2.6) in Ty with u(l) = 0 (i.e., over a stationary medium), the

“inversion path is then recorded in the form

£, =T a(l). (2.8)

_83. Determination of Inversion Path in Certain Extreme Cases for Rapid Waves

: - . . '~_|
Lipect , pla=-%)t l
These statements of inequality denote that Py and p, are much smaller than the

magnetic pressure,

Equations (2. 2) assume the form

i | i/‘g) ....‘?_.‘ i(_,i‘-__ . ( )1/2- ( :

![ é’? ? C{P Pﬂ ‘ .’ N (3.11
£ n BB

g l1-5R)e™s m@ Prett; Liade.

From the first equation we obtain 1 = Zop_z. It is then easy to find that

|ijkar*é£=

Wrr‘ﬁ’ 2

N;..a



By use of this result we obtain the following expression for the inversion path’ /9

Ciny T F i VA D (3.2)
Let B
HE =g AL, A0 | (3.3)

(The graph of this function is shown in Figure 3.) Einv = 1/3 o, the profile

being inverted at the base, that is, when £ = 1,

2. 1 << 1. Equatiens (2.2) assume the form:
d(1/€) 2 codu _Rs .
dp &g dp TP

Pt / [ . - . o
Bu-al)eep (1-2)et"; e fe

(3.4)

- o = st llt =)0+ /.|

From the first equation of system (3.4) we obtain I = 7 p-z, after which it is

easy to flnd the following expr6551on for the inversion path:

' ]/-""*L i

in osgsi V15 d (3.5)
Adoptlng f{f) in the form of (3 3) we obtain E =1/3 a.

84, Determlnatlon of Inversion Path in Certain Extreme Cases for Slow Waves

1o pect . Bl

Y

Equations (2.2) assume the form (see [3]):

- o((ue) g
dP '-& .
(3.6)
3
,d'P__[f_({;’F "E] ’?E
We obtain the following expression for o
Integrating system (3.6) we obt;in - {10,
r N '"'__ AP %__; G,.j; & :
pli-48) =g (1-3)p; p | 5.7)

p=1- p{i_—:ff'[ /C - Y. )"e”-?;; E}]

L . -——w—s——r—-“‘ -



It can be readily seen that p is a monotonically decreasing function of 1/7.
Then 1/7 is in its turn a monotonically decreasing function of p. We introduce
the notation FT

1/e=F(p},

It is then easy to obtain the following equatlons

g =T e

P 35, . d&i_l‘/ 7.
‘ ferm P dp TVFEED

! e ‘f o (3.8)

" 35, fo (1 — 2e)(F(p} - 1)-2
Vzn-F(p) [1+ [F(;J]’ _ !

The last term in [3 8) may “be disregarded because B is so small, and we then

(v}

obtain 4
’ % iy =? os;sx[ VF’!:; } ( '
- (3.9)
Let us takérfé) in the form of (3.3). By introducing the notation Z = 1 - g2

‘we obtain the following formula for the 1nvers1on path 7
_]C [Ra2+8) (3.9")
inv ‘1&0;2 €f 1-
The following equation can ea511y be obtained by use of (3 6):

SEL DR e

dEi

+ F(J? n)} |

The first term in the braces may be dlsregarded because 8 is so small, providéa;
only that o is not too large. Then F(aZ + 1)/(1 - Z) is a monotonically -7

increasing function and the minimum in (3.9') is reached when Z = 0. Thus we /11

obtain for the inversion path

oy = 1 (3.10)

2. 1 K 1. Equatlons (2 2) assume the form

L d(1/e) . 2p(1- 2L du _ a. .

Cod = T elze. +§3€(i 3F7 0 dp [ 5.11)
| (*%e)=ﬁa(i—~ﬂ)(%~)*_"zp,_ =gl =

We have the following expression for u2

[RSIETVR PRNEPYLI ) M. .

- &r_p &f(1- Ap/p) 33+(/{’]



By integrating (3.11) we obtgln_

PRI f_ { ’LV* IETACE APa/PaJ]}' 123

(%)= f TP ape/p) I (3.12)

It can readily be seen that (Z /Z) decreases monctonically with p increasing
1/2

from 1 to += and (ZO/Z) = 0 when p > o,

For the purposes of the following discussion we shall assume that BO > 1,

rBo(l - ﬁpo/pO >> 1. Then we obtain the following equations from (3.11) and.”

(3.12): |
s st R) pnt] G
E e G O L T

(3.15)

It follows from (3.15) that a% > 0 when Apé/po > -5. We shall henceforth assume

this condition to have been fulfilled.

Let us EEﬁ&;?ﬁE) in the form of (3.3). We then obtain the following ex-
faxe A

pression for the inversion path:

TR ‘ \
i T Izr(%*‘%-ﬁr) ,?;&*:MWN (3.10) [2_
in which - S };ifz ; -
?(p A[P ( A&)} ]

VEE e Al

We easily obtain

-

|

[0 = 109" -804+~ $F9"(1-58) ¢ 2417 T g8) 145002

R

P =V upT - £{i- SBIITP = £ (t — ) [ (3.17)

b

j-%

|

in which

function wl(p) is a quadratic trinomial relative to (1 - Apo/po). Let us cal-

culate its discriminant D(p). We have

{—@(P)_'ZSP‘G[! “t-_‘- S ; ? lﬁ 13I
L D)=z~ [1690"-300p(1+4) +128(1+4) ). 1 (3.18)



e

D(p) < 0 when 0.707(1 + a) < p < 1.06(1 + o). If o < 0.414, then 0.707 (L + a) <
< 1. 1In this case o¢fap > 0 on segment {1, 1 + a]. Then ¢(p) assumes the

minimum value when p = 1. Thus for the inversion path we obtaln

5+ Ape/pe
£y = :-3{71’ ‘l when ,“oxuq | (3.19)
When ap /p_ = -3, a = 0.3, we have £, = 0.185, i.e., the wave 1s inverted
o' Yo inv

“after approximately one-fifth of its length L has passed.

It must be noted that when BO ~> 1 the condition of occurrence of serpentiﬁe
instability is written in the form 8 > B(1 - Ap/p) or Ap/p > 0. But it follow_J
A

from (3.11) that . e e
AP/P {- (1 -apafpo)p“’

29

Thus we find that on change in p from 1 to 1 + o the condition of absence of
serpentine 1nstab111ty is expressed by the statement of inequality i

ﬂf_’: {f:u)ﬁi 1 (3.20)j

L.__.,, -

This condition will be used subsequently in discussion of the numerical results.

§5. Determination of the Inversion Path by a Numerical Method : /13

In the general case it is not possible to investigate expression (2.7)
analytically and determine the inversion path. Hence a numerical method is

utilized.

Equation (2.2) is integrated and formula

_ miﬁ—‘ag-—-—'—*‘i*‘ +y . 4.1

derived in [3] is used for numerical determlnatlon of the inversion path.

Coefficients a_, a,, a_, are given in [3] and are not reproduced here because of

17 72* 73
being too_un@igldx,\ sinv is determined by means of formulas (2.7) and (2.8).

f(£) was in this case selected in the form of (3.3) (see Figure 3).

Einv as a functioﬁ;of I/Z;“has been calculated for rapid waves, it being

assumed that o = 1. Five cases have been considered:

Z 0,04 s er/h =0 omeTi

o=0,4 ;alp.=10 .‘_;_;_ curve 2;

A Corap/pe=0 ;fiﬁrw:&

]

e

. GaRlpe=09 3 _cuved
,=UG‘574 Apjpan-g _;; cdiveS,\

H

Tam -
H@‘1}‘1§“ﬁr§n




'1/20 in this case ranges from 1 to 11. The results of the calculation are pre-:
sented in Figure 4. It is to be noted that the 2nd, 4th and 5th cases are
characterized by the fact that when ¢ = 1 the value of the voltage tensor

deviator is the same and its ratio to the magnetic pressure equals 0.4.

The inversion path as a function of B, with o = 0.03, was determined for
slow magnetosonic waves. In accordance with (3.20), at large values B the

Serpentine instability does not occur at

AP:Po 2y 1,1*-2‘743 J

AAp /p = -3 was selected for the numerlcal calculatlons. The next difficulty is /14
caused by the fact that at 1/1 ~ 1, over a sufficiently wide range of B values

'we encounter an integral curve B (p) such as does not permit increase in p by a
factor of 1.3 (see Figure 2). In order to surmount this difficulty, it is

assumed that Z = 0.01. In this case the portions of the integral curves on

which B; increase with increase in p are displaced far to the right along the pj

axis.

In the numerical calculations 8 ranged from 0.01 to 5. The results of the

calculations are presented in Figure 5.

It is to be seen from Figure 4 that when ZO - 0, Einvig 1/3, with 8 << 1,
Einv is near 1/3 at any value 1. This is in close agreement with the results
of §3. Unfortunately, it is not possible to devise a logical physical explana-
tion for the behavior of the curves at 1/Z0 ~ 1, However, it must be remembered
that the CGL equations are valid only for motion perpendicular to the magnetic
field., In addition, cold plasma is described by equationé which are equations
fpffﬁigzgﬁEIﬁﬁity]and conservation of momentum. For this reason it is precisely

the limiting cases discussed in §3 which are of the greatest interest.

It is to be seen from Figure 5 that when B —+ =, Einv =+ 0.185, and when

B> 0, Einv ~ 0.833, this agreeing with the results of §4.

§6. Effect of Wave Inversion on Solar Wind Heating

The following mechanism of solar wind heating is proposed in [4]. It is
‘assumed that there emerges from the base of the external corona an energy flux
of the order of 5 x 1026 erg/sec in the form of hydromagnetic waves. The lines

‘of férce of the magnetic field are considered to be in the form of spirals, in

10



keeping with the models discussed in [5]. 1In particular, it is assumed that
the magnetic field of the Sun is almost radial up to distances of the order of
10 Ry » Where Ro is the radius of the Sun. It is believed that the spectrum of
the waves emerging from the base of the external corona is isotropic. As has
been demonstrated in [6], slow magnetosonic waves are damped at a distance of
the order of several wavelengths. It is also demonstrated here that the rapid
waves are also rather intensely damped, provided that they are not propagated
along or across the magnetic field., It is shown in [4] that the wave vector
tends to become radial when waves are propagated from the Sun through inter-
planetary plasma. Owing to these two processes (damping and the tendency of

waves toward radial propagation), approx1mate1y 1% of the wave energy remains at

a distance of the order of several solar rad;%ses this energy belng prOpagated |

-2
in the form of radlal waves., These waves_ subsequently enter a reglon in whlch

R
ture of the ions along the magnetic fleld, as has been demonstrated in [?].

It is demonstrated below that the inversion path of the rapid magnetosonic
‘waves referred to in the foregeing is much shorter than the solar radius. Con-
sequently, without being inverted they cannot reach thcrregions in which the
magnetic field ceases to be radial and the waves are greatly damped. When a _
wave is inverted its profile becomes steeper, this leading to the occurrence of :

shortwave harmonics in expansion’ of the wave into a Fourier series.” A time )

comes when the wavelengths of these harmonics become comparable to the Larmor
radius of the ions, and the conclusions drawn in [6] consequently do not apply
-to them. It may be found, in particular, that they are greatly damped on being -
propagated along the magnetic field. Hence it is necessary to allow for non-
linear effects in wave propagation in the theery qdvaﬁted;in [4]. Let us deter-
miné the inversion path of rapid radially propagated magnetosonic waves at a

distance ¥ = 10 Ry- The following solar wind parameters at r = 10 R, are given.

in [4]: ion density N 2-104cm 3, temperature T :.106°

K, magnetic induction

-2 . D s . . : . '
B > 10 gauss. 1In addition, it is pointed out in [4] that on change in r from
2 RD to 10 R N decreases as r_3. It 1s then easy to obtain the following

approximate expression for N:

—_— - - - . -t

L W= (R (4.1)

11
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Say that at distance T .o N changes by 1%. The following approximate formula

can be obtained for 1 :
one

o 00332 o (4.2)

011 R

In particular, when r =~ 10 Ro{rrone :.2-10 km. The solar plasma may clearly be

considered to be homogeneous at a distance of the order of r e

Let ZZZ be the mean free path of the electrons, and Ts5 the Larmor radius }
of the ions Employing the formula for a fully ionized Coulomb gas, wehgbgginﬁﬁ
ZZZ _.10 km., For the Larmor ion radius we have the value Ty =~ 1 km. The CGL
equations are then applicable to waves length L of which satisfies the following

statement of inequality:
1 km &< L << 10° k. (4.3)

However, we are considering waves coming from the base of the external coroma.

When r = .2 Ry we have the following values of ZZZ and LT ZZZ _-103 km, i

T,. = 100 m. Hence in the range from 2 R@ to 10 Ry the CGL equations are valid

i
for waves having a length

WZ~1@ wiﬂﬂm

(4.4)

When r = 10 R, the temperature in the solar wind is isotropic and the
temperatures of the ions and electrons are cqual. We obtain the following
values for the thermal and magnetic pressures P, = 3*10-6 dyn/cmz, Bi/Sm > 4.
<10 dyn/cmz. The speed of the solar wind u :.107 cm/sec = 100 km/sec., We

A I P S .
obtaln the fOllOWlng phase veIOC1ty for waves propagated along the magnetlc fleld ]

A ] .

“*““}"’-’% " (4.5)
By means of primes we will designate small disturbances of the corresponding /17
— .
values. For a rapid wave we obtain B' = 0, v!' = 0 and thus EI = 0. Since in
> :

the CGL E" = 0, we obtain'ﬁ' = 0. Hence p', u', pf; and p” undergo change in

a rapid wave propagated along the magnetic field. The mean energy of the wave

.may be estimated as follows: e .
[ <W};\,ave-- 2 po <usy ]

. (4.6)
AL
‘The symbol < > denotes averaging over space. Veloc1ty and density disturbances

are related as follows in a rapid wave:

12



| u'= Zp ] (.7

Say that all energy is propagated in the form of waves of length L and with a

ratio of amplitude of density disturbance to undisturbed density equalling a.

Then .. _.
<~W>iwave|“4‘if’°

‘Jn:;‘( (4'8)

The waves transfer through a spherical surface of radius r energy equalling

: AW = 4m'c(a++u) Aap. al (4.9)

“Substituting in (4.8) r = 10 RD and the values of a_, uo, and o corresponding

to the distance from the Sun, we obtain for W

erg/sec (4.10)

But on the other hand, W = 5- 10 erg/sec (see [4]). Thus, a = 0.1. It is
shown in the appendix that a simple wave propagatéd along the magnetic field is
inverted after traveling a path of the order of L/a. In our case the inversion
path will thus be of the order of 10 L, It follows from (4.4) that the inversion

will take place at a distance not exceeding 1,000 km, this being smaller than
Salfer o . o=
T and even smaller than R@_j
one : A

It is to be noted that the conclusions drawn in this section are based on /18

application of the CGL equations to motion of a plasma along a field, and there

"is little justification for this.

13



FIGURES

Figure 1. Illustrating Trace of In- Figure 2. Illustrating Trace of In- /21
tegral Curves for Rapid Simple Waves. tegral Curves for Slow Simple Waves.
A region of serpentine instability is A region of serpentine instability
situated to the right of curve 1. "~ is situated to the right of curve 1.
| 89
i : 4o 1
I
Figure 3. Solid-Line Curve: /22
Graph of Function.
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APPEND IX
e C{‘

G e e et — [— . —— e e

Let us construct the préélse solutlon of equatlonij(z 2) We make use of

the fact that when I = A_ = 0 when p > 0%, A =0 when p < p¥ '(see Figures 1

and 2), in which p* is defined by equatlon (1.5) may be rewritten as follows

1n dlmen51on1ess form:

4fug* =puli- —*’°—)f°+4 )

T

Let us consider twd'simple waves, one folloW1ng closely behind the other
aldng the magnetic field (i.e., I=-1). 1In the first, slow, wave, p varies from
1 to p*, and in the second from p* to 1 + a. If 1]+ a < p*, it suffices to

consider the first wave only. Wetaq;ermingv§h¢_gbas§if%lqcity relative to the .

__medium at rest, o, as follows: ,,Hf_.;f!—"f*— - T T
G-:“Q-- p(jb ‘5f°
o, P>P" Br P {2)

It can readily be seen that a solution such as this satisfies (2.2), since it
converts the righthand and lefthand members of the equation for 1/ into
identical zeroes. In this wave the longitudinal velocity and the pressure
tensor components change with change in p. ,The transverse components of the

magnetic field and velocity remain equal to zero.

On the basis of (2) it is easy to obtaln

(3)

from which is derived the formula for a dimensionless inversion path

g, = i(maxrén 4y a8,

‘Taking £(¢) in the form of (3.3), we obtaln for the dlmen51on1ess inversion

path
Sinv ~ “/4-:\ . : ‘ (5)

When £(¢) = 1 + o cos nf/2, Einv = 1/7ma.

16-
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